Logo Università degli Studi di Milano



 
 

Metabolismo cellulare e medicina rigenerativa  

Linea di ricerca


@ Laboratorio di Metabolismo Cellulare e Medicina Rigenerativa,
Dipartimento di Biotecnologie Mediche e Medicina Translazionale
Università degli Studi di Milano


Il laboratorio del Dr. Bifari sviluppa nuovi approcci farmacologici per la rigenerazione del tessuto neurale per il trattamento delle malattie neurodegenerative
Obiettivo del laboratorio è di raggiungere trattamenti efficaci per rigenerare il tessuto neurale in diversi modelli preclinici di malattie neurodegenerative (tra cui la lesione del midollo spinale, la leucodistrofia metacromatica) modulando: i) il differenziamento, la funzione e la sopravvivenza delle cellule neurali; ii) l’infiammazione e l’attivazione del sistema immune; iii) il microambiente malato aumentando l’angiogenesi e il rimodellamento della matrice extracellulare.

Il laboratorio del Dr. Bifari utilizza metodologie state-of-the art e cutting-edge per valutare in vivo e in vitro l’assetto molecolare (RNA-seq, RNAscope), il fenotipo metabolico (metabolocia e flux analysis) e il differenziamento (gene fate mapping, organoids) delle cellule staminali neurali.

 

Contatti:

Francesco Bifari, MD, PhD (francesco.bifari@unimi.it )
Laboratory of Cell Metabolism and Regenerative Medicine
Department of Medical Biotechnology and Translational Medicine
University of Milan
Via Vanvitelli 32; 20129, Milan, Italy
tel. +390250316 997-991
fax. +390250317056

 

Publicazioni rilevanti (selezione):

  1. Bifari F. et al. Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism PHARMACOLOGICAL RESEARCH. 2020 Aug;158:104863
  2. Martano G. et al. Metabolism of stem and progenitor cells: proper methods to answer specific questions. FRONTIERS IN MOLECULAR NEUROSCIENCE  2019 Jun 13;12:151.
  3. Pino A, et al. New neurons in adult brain: distribution, molecular mechanisms and therapies. BIOCHEM PHARMACOL. 2017 Oct 1;141:4-22 1. 
  4. Dolci S, et al. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy. FRONT PHARMACOL. 2017 Oct 12;8:703.
  5. Bifari F, et al. Neurogenic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. CELL STEM CELL, 2017 Mar 2;20(3):360-373.e7.
  6. Bifari F, et al. Meninges harbor cells expressing neural precursor markers during development and adulthood. FRONT CELL NEUROSCI. 2015 Oct 2;9:383 11. 
  7. Cantelmo AR, et al.  Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. CANCER CELL. 2016 Nov 8. 30(6):968-985.
  8. Lange C, et al. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO JOURNAL. 2016 May 2;35(9):924-41.
  9. Quaegebeur A, et al.Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. CELL METABOLISM. 2016 Feb 9;23(2):280-91
  10. De Bock K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting.  CELL ; 2013 Aug 1, 154(3):651-63.
  11. Decimo I, et al. Nestin- and doublecortin-positive neural precursors are present in adult rat spinal cord meninges and contribute to injury-induced scar formation . STEM CELLS; 2011 Dec; 29(12):2062-76.

 

 

 

 

 

 

Torna ad inizio pagina